Искусственный интеллект: его истоки и проблемы

         

Целью создания формального языка для


Целью создания формального языка для описания мышления задавался также Джордж Буль, математик XIX столетия, чью работу необходимо упомянуть при рассмотрении истоков искусственного интеллекта [Boole, 1847, 1854]. Хотя Буль внес вклад во множество областей математики, его наиболее известным открытием стала математическая формализация законов логики- свершение, сформировавшее самую сердцевину современных компьютерных наук. Роль булевой алгебры в проектировании логический цепей хорошо всем известна, однако цели самого Буля в разработке его системы по духу ближе к современному ИИ. В первой главе книги "Исследование законов мышления, на которых основываются математические теории логики и вероятностей" Буль описывает свои цели следующим образом.

Исследовать фундаментальные законы таких операций разума, какими совершается рассуждение: дать им выражение в символическом языке исчисления и на этом основании воздвигнуть науку логики и обучать логическому методу; ...наконец, из различных элементов истины, усмотренной в этих изысканиях, составить некоторые вероятные догадки касательно природы и склада человеческого ума.

Значимость работы Буля состоит в необычайной силе и простоте предложенной им системы. Три операции: "И" (обозначаемая * или л), "ИЛИ" (обозначаемая + или v) и "НЕ" (обозначаемая символом -0 составляют ядро его логического исчисления. Эти операции стали базой для последующего развития формальной логики, включая разработку современных компьютеров. Сохраняя значения этих символов практически идентичными соответствующим логическим операциям, Буль отмечал, что "символы логики относятся к специальному закону, к которому символы количества как таковые не имеют отношения". Этот "закон" утверждает, что для каждого элемента X алгебры Х*Х=Х (поскольку мы знаем истинность чего-либо, повторение не может изменить это знание). Это привело к ограничению булевых значений всего до двух чисел, которые удовлетворяют этому уравнению, - 1 и 0. Стандартные определения операций булевого умножения (И) и сложения (ИЛИ) следуют из этих соображений.

Булева система не только легла в основу двоичной арифметики, но и показала, что необычайно простая формальная система может передать полную мощь логики. Это предположение и система, разработанная Булем для демонстрации этого факта, стали фундаментом для всех попыток современности формализовать логику, от работы [Whitehead и Russell, 1950], последующих работ Тьюринга и Геделя до современных систем автоматических рассуждений.

Готлоб Фреге (Frege) в своих "Основах арифметики" [Frege, 1884] создал ясный и точный язык спецификации для описания основ арифметики. С помощью этого языка Фреге формализовал многие вопросы, затронутые ранее в аристотелевской "Логике". Язык Фреге, сейчас именуемый исчислением предикатов первого порядка, служит инструментом для записи теорем и задания значений истинности, которые образуют элементы математических умозаключений и описывают аксиоматический базис "смысла" этих выражений. Предполагалось, что формальная система исчисления предикатов, которая включает символы предикатов, теорию функций и квантированных переменных, станет языком для описания математики и ее философских основ. Она также сыграла принципиальную роль в создании теории представления для искусственного интеллекта (см. главу 2). Исчисление предикатов первого порядка обеспечивает средства автоматизации рассуждений: язык для построения выражений, теорию, позволяющую судить об их смысле, и логически безупречное исчисление для вывода новых истинных выражений.

Работа Рассела и Уайтхеда особенно важна для фундаментальных принципов ИИ, поскольку заявленной ими целью было вывести из набора аксиом путем формальных операций всю математику. Хотя многие математические системы строились на основе аксиом, интересно отношение Рассела и Уайтхеда к математике как к чисто формальной системе. Это означает, что аксиомы и теоремы должны рассматриваться исключительно как наборы символов: доказательства должны выводиться лишь посредством применения строго определенных правил для манипулирования такими строками. При этом исключается использование интуиции или "смысла" теорем в качестве основы доказательств. Каждый шаг доказательства следует из строгого применения формальных (синтаксических) правил к аксиомам или уже выведенным теоремам, даже если в традиционных доказательствах этот шаг назывался "очевидным". Смысл, содержащийся в теоремах и аксиомах системы, имеет отношение только к внешнему миру и совершенно не зависит от логического вывода. Такой полностью формальный (реализуемый техническими средствами) подход к математическим умозаключениям предоставил существенную основу для его автоматизации в реальных вычислительных машинах. Логический синтаксис и формальные правила вывода, разработанные Расселом и Уайтхедом, лежат в основе систем автоматического доказательства теорем, рассматриваемых в главе 12, а также составляют теоретические основы искусственного интеллекта.

Альфред Тарский (Tarski) - еще один математик, чьи работы сыграли принципиальную роль в процессе формирования искусственного интеллекта. Тарский [Tarski, 1944, 1956] создал теорию ссылок (theory of reference), согласно которой правильно построенные формулы (well-formed formulae) Фреге или РасселаУайтхеда определенным образом ссылаются на объекты реального мира (см. главу 2). Эта концепция лежит в основе большинства теорий формальной семантики. В работе "Семантическая концепция истинности и основание семантики" Тарский описывает свою теорию ссылок и взаимосвязей между значениями истинности. Современные исследователи компьютерных наук связали эту теорию с языками программирования и другими компьютерными реалиями [Burstall и Darlington, 1977].

Хотя в XVIII-XIX вв. и начале XX в. формализация науки и математики создала интеллектуальные предпосылки для изучения искусственного интеллекта, он не стал жизнеспособной научной дисциплиной до появления цифровых вычислительных машин. К концу 1940-х гг. электронные цифровые компьютеры продемонстрировали свои возможности в предоставлении памяти и процессорной мощности, требуемой для интеллектуальных программ. Стало возможным реализовать формальные системы рассуждений в машине и эмпирически испытать их достаточность для проявления разумности. Существенной составляющей теории искусственного интеллекта является взгляд на цифровые компьютеры как на средство создания и проверки теорий интеллекта.

Но цифровые компьютеры - не только рабочая лошадка для испытания теорий интеллекта. Их архитектура наталкивает на специфичное представление таких теорий: интеллект - это способ обработки информации. Например, концепция поиска как методики решения задач обязана своим появлением в большей степени последовательному характеру компьютерных операций, нежели какой-либо биологической модели интеллекта. Большинство программ ИИ представляют знания на некотором формальном языке, а затем обрабатывают их в соответствии с алгоритмами, следуя заложенному еще фон Нейманом принципу разделения данных и программы. Формальная логика возникла как важный инструмент представления для исследований ИИ, равно как теория графов играет неоценимую роль в анализе пространства, а также предоставляет основу для семантических сетей и схожих моделей. Эти методы и формализмы детально обсуждаются в последующих главах книги. Здесь они упоминаются для подчеркивания симбиотических отношений между цифровыми компьютерами и теоретическими основами искусственного интеллекта.

Мы часто забываем, что инструменты, которые мы создаем для своих целей, влияют своим устройством и ограничениями на формирование наших представлений о мире. Такое казалось бы стесняющее наш кругозор взаимодействие является важным аспектом развития человеческого знания: инструмент (а научные теории, в конечном счете, тоже инструменты) создается для решения конкретной проблемы. По мере применения и совершенствования инструмент подсказывает другие способы его использования, которые приводят к новым вопросам и, в конце концов, разработке новых инструментов.


Содержание  Назад  Вперед







Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий