Искусственный интеллект: его истоки и проблемы


Искусственный интеллект: его истоки и проблемы - стр. 4


Поскольку разум и тело оказались разделенными, философы сочли нужным найти способ воссоединить их, ведь взаимодействие между умственным, res cogitans, и физическим, res extensa, необходимо для человеческого существования.

По поводу проблемы "ума и тела" были написаны миллионы трудов и было предложено множество решений, однако ни одно из них не смогло успешно объяснить очевидные взаимодействия между умственными состояниями и физическими действиями. Наиболее приемлемый ответ на этот вопрос, дающий необходимое основание для изучения ИИ, состоит в том, что ум и тело вовсе не принципиально разные сущности. Согласно этой точке зрения ментальные процессы происходят в таких физических системах, как мозг (или компьютер). Умственные процессы, как и физические, можно, в конечном счете, охарактеризовать с помощью формальной математики. Или, как сказал философ XVII века Гоббс (1651), "мышление есть лишь расчет".

1.1.2. Развитие логики

Поскольку мышление стало рассматриваться как форма вычислений, последующими шагами в его изучении стали формализация и окончательная механизация. В XVIII в. Готфрид Вильгельм фон Лейбниц в работе "Calculus Philosophicus" представил первую систему формальной логики, а также соорудил машину для автоматизации ее вычислений [Leibniz, 1887]. Эйлер в начале восемнадцатого века в своем анализе задачи о ке-нигсбергских мостах (см. введение в главу 3) создал учение о представлениях, которые абстрактно отражают структуру взаимосвязей реального мира [Euler, 1735].

Формализация теории графов также сделала возможным поиск в пространстве состояний (state space search) - основной концептуальный инструмент искусственного интеллекта. Графы можно использовать для моделирования скрытой структуры задачи. Узлы графа состояний (state space graph) представляют собой возможные стадии решения задачи; ребра графа отражают умозаключения, ходы в игре или другие шаги в решении.

Решение задачи - это процесс поиска пути к решению на графе состояний (см. раздел 1.3 и главу 3). Описывая все пространство решений задачи, графы состояний предоставляют мощный инструмент для измерения структурированности и сложности проблем., адшиш. эффективности, корректности и общности стратегий решения.

Как один из основоположников науки исследования операций, а также разработчик первых программируемых механических вычислительных устройств, математик XIX в. Чарльз Бэббидж может также считаться одним из первых практиков искусственного интеллекта [Morrison и Morrison, 1961]. "Разностная машина" Бэббиджа являлась специализированным устройством для вычисления значений некоторых полиномиальных функций и была предшественницей его "аналитической машины". Аналитическая машина, спроектированная, но не построенная при жизни Бэббиджа, была универсальным программируемым вычислительным устройством, которое предвосхитило многие архитектурные положения современных компьютеров.

Описывая аналитическую машину, Ада Лавлейс [Lovelace, 1961], друг Бэббиджа, его помощница и единомышленница, отмечала:

"Можно сказать, что аналитическая машина плетет алгебраические узоры подобно тому, как станок Жаккарда ткет узоры из цветов и листьев. В этом, как нам кажется, заключается куда больше оригинальности, чем в том, на что могла бы претендовать разностная машина".

Бэббиджа вдохновляло желание применить технологию его времени для освобождения людей от рутины арифметических вычислений. В этом отношении, как и в представлении о вычислительных машинах как механических устройствах, Бэббидж рассуждал всецело с позиций XIX века. Тем не менее его аналитическая машина также основывалась на многих идеях современности, таких как разделение памяти и процессора ("склад" и "мельница", в терминах Бэббиджа), концепция цифровой, а не аналоговой машины и программируемость, основанная на выполнении серий операций, закодированных на картонных перфокартах. Отличительная черта описания Ады Лавлейс и работы Бэббиджа в целом - это отношение к "узорам" алгебраических взаимосвязей как сущностям, которые могут быть изучены, охарактеризованы, наконец, реализованы и подвергнуты механическим манипуляциям без заботы о конкретных значениях, которые проходят через "мельницу" вычислительной машины. Это и есть реализация принципа "абстракции и манипуляции формой", впервые описанного Аристотелем.




Начало  Назад  Вперед



Книжный магазин