Искусственный интеллект: его истоки и проблемы


Искусственный интеллект: его истоки и проблемы - стр. 17


Такое описание нейрона необычайно просто, но оно передает основные черты, существенные в нейронных вычислительных моделях. В частности, каждый вычислительный элемент подсчитывает значение некоторой функции своих входов и передает результат к присоединенным к нему элементам сети. Конечные результаты являются следствием параллельной и распределенной обработки в сети, образованной нейронными соединениями и пороговыми значениями.

Нейронные архитектуры привлекательны как средства реализации интеллекта по многим причинам. Традиционные программы ИИ могут быть слишком неустойчивы и чувствительны к шуму. Человеческий интеллект куда более гибок при обработке такой зашумленной информации, как лицо в затемненной комнате или разговор на шумной вечеринке. Нейронные архитектуры, похоже, более пригодны для сопоставления зашумленных и недостаточных данных, поскольку они хранят знания в виде большого числа мелких элементов, распределенных по сети.

С помощью генетических алгоритмов и методик искусственной жизни мы вырабатываем новые решения проблем из компонентов предыдущих решений. Генетические операторы, такие как скрещивание или мутация, подобно своим эквивалентам в реальном мире, вырабатывают с каждым поколением все лучшие решения. В искусственной жизни новые поколения создаются на основе функции "качества" соседних элементов в прежних поколениях.

И нейронные архитектуры, и генетические алгоритмы дают естественные модели параллельной обработки данных, поскольку каждый нейрон или сегмент решения представляет собой независимый элемент. Гиллис [Hillis, 1985] отметил, что люди быстрее справляются с задачами, когда получают больше информации, в то время как компьютеры, наоборот, замедляют работу. Это замедление происходит за счет увеличения времени последовательного поиска в базе знаний. Архитектура с массовым параллелизмом, например человеческий мозг, не страдает таким недостатком. Наконец, есть нечто очень привлекательное в подходе к проблемам интеллекта с позиций нервной системы или генетики. В конце концов, мозг есть результат эволюции, он проявляет разумное поведение и делает это посредством нейронной архитектуры. Нейронные сети, генетические алгоритмы и искусственная жизнь рассматриваются в главах 10 и 11.

1.2.10. Искусственный интеллект и философия

В разделе 1.1 мы представили философские, математические и социологические истоки искусственного интеллекта. Важно осознавать, что современный ИИ не только наследует эту богатую интеллектуальную традицию, но и делает свой вклад в нее.

Например, поставленный Тьюрингом вопрос о разумности программ отражает наше понимание самой концепции разумности. Что такое разумность, как ее описать? Какова природа знания? Можно ли его представить в устройствах? Что такое навыки? Может ли знание в прикладной области соотносится с навыком принятия решений в этой среде? Как знание о том, что есть истина (аристотелевская "теория"), соотносится со знанием, как это сделать ("практика")?

Ответы на эти вопросы составляют важную часть работы исследователей и разработчиков ИИ. В научном смысле программы ИИ можно рассматривать как эксперименты. Проект имеет конкретную реализацию в виде программы, и программа выполняется как эксперимент. Разработчики программы изучают результаты, а затем перестраивают программы и вновь ставят эксперимент. Таким образом возможно определить, являются ли наши представления и алгоритмы достаточно хорошими моделями разумного поведения. Ньюэлл и Саймон [Newell и Simon, 1976] предложили этот подход к научному познанию в своей тьюринговской лекции 1976 г.

Ньюэлл и Саймон также предложили более сильную модель интеллекта в своей гипотезе о физической символьной системе: физическая система проявляет разумное поведение тогда и только тогда, когда она является физической символьной системой. В главе 16 подробно рассматривается практический смысл этой теории, а также критические замечания в ее адрес.

Многие применения ИИ подняли глубокие философские вопросы. В каком смысле можно заявить, что компьютер "понимает" фразы естественного языка? Продуцирование и понимание языка требует толкования символов. Недостаточно правильно сформировать строку символов.




Начало  Назад  Вперед



Книжный магазин