Искусственный интеллект: его истоки и проблемы


Искусственный интеллект: его истоки и проблемы - стр. 11


Поиск - это метод решения проблемы, в котором систематически просматривается пространство состояний задачи (problem states), т.е. альтернативных стадий ее решения. Примеры состояний задачи: различные размещения фигур на доске в игре или же промежуточные шаги логического обоснования. Затем в этом пространстве альтернативных решений производится перебор в поисках окончательного ответа. Ньюэлл и Саймон [Newell и Simon, 1976] утверждают, что эта техника лежит в основе человеческого способа решения различных задач. Действительно, когда игрок в шахматы анализирует последствия различных ходов или врач обдумывает различные альтернативные диагнозы, они производят перебор среди альтернатив. Результаты применения этой модели и средства ее реализации обсуждаются в главах 3,4,5 и 16.

Как и большая часть наук, ИИ разбивается на множество поддисциплин, которые, разделяя основной подход к решению проблем, нашли себе различные применения. Очертим в этом разделе некоторые из основных сфер применения этих отраслей и их вклад в искусственный интеллект вообще.

1.2.1. Ведение игр

Многие ранние исследования в области поиска в пространстве состояний совершались на основе таких распространенных настольных игр, как шашки, шахматы и пятнашки. Вдобавок к свойственному им "интеллектуальному" характеру такие игры имеют некоторые свойства, делающие их идеальным объектом для экспериментов. Большинство игр ведутся с использованием четко определенного набора правил: это позволяет легко строить пространство поиска и избавляет исследователя от неясности и путаницы, присущих менее структурированным проблемам. Позиции фигур легко представимы в компьютерной программе, они не требуют создания сложных формализмов, необходимых для передачи семантических тонкостей более сложных предметных областей. Тестирование игровых программ не порождает никаких финансовых или этических проблем. Поиск в пространстве состояний - принцип, лежащий в основе большинства исследований в области ведения игр, - представлен в главах 3 и 4.

Игры могут порождать необычайно большие пространства состояний. Для поиска в них требуются мощные методики, определяющие, какие альтернативы следует рассматривать. Такие методики называются эвристиками и составляют значительную область исследований ИИ. Эвристика- стратегия полезная, но потенциально способная упустить правильное решение. Примером эвристики может быть рекомендация проверять, включен ли прибор в розетку, прежде чем делать предположения о его поломке, или выполнять рокировку в шахматной игре, чтобы попытаться уберечь короля от шаха. Большая часть того, что мы называем разумностью, по-видимому, опирается на эвристики, которые люди используют в решении задач.

Поскольку у большинства из нас есть опыт в этих простых играх, можно попробовать разработать свои эвристики и испытать их эффективность. Для этого нам не нужны консультации экспертов в каких-то темных для непосвященных областях, вроде медицины или математики. Поэтому игры являются хорошей основой для изучения эвристического поиска. Глава 4 рассказывает об эвристиках на примере этих простых игр; в главе 7 их использование распространяется на построение экспертных систем. Программы ведения игр, несмотря на их простоту, ставят перед исследователями новые вопросы, включая вариант, при котором ходы противника невозможно детерминировано предугадать (см. главу 8). Наличие противника усложняет структуру программы, добавляя в нее элемент непредсказуемости и потребность уделять внимание психологическим и тактическим факторам игровой стратегии.

1.2.2. Автоматические рассуждения и доказательство теорем

Можно сказать, что автоматическое доказательство теорем - одна из старейших частей искусственного интеллекта, корни которой уходят к системам Logic Theorist (логический теоретик) Ньюэлла и Саймона [Newell и Simon, 1963a] и General Problem Solver (универсальный решатель задач) [Newell и Simon, 1963b] и далее, к попыткам Рассела и Уайтхеда построить всю математику на основе формальных выводов теорем из начальных аксиом. В любом случае эта ветвь принесла наиболее богатые плоды. Благодаря исследованиям в области доказательства теорем были формализованы алгоритмы поиска и разработаны языки формальных представлений, такие как исчисление предикатов (см. главу 2) и логический язык программирования PROLOG (глава 14).

Привлекательность автоматического доказательства теорем основана на строгости и общности логики. В формальной системе логика располагает к автоматизации. Разнообразные проблемы можно попытаться решить, представив описание задачи и существенную относящуюся к ней информацию в виде логических аксиом и рассматривая различные случаи задачи как теоремы, которые нужно доказать. Этот принцип лежит в основе автоматического доказательства теорем и систем математических обоснований (см. главу 12).

К сожалению, в ранних пробах написать программу для автоматического доказательства не удалось разработать систему, которая бы единообразно решала сложные задачи. Это было обусловлено способностью любой относительно сложной логической системы сгенерировать бесконечное количество доказуемых теорем: без мощных методик (эвристик), которые бы направляли поиск, программы доказывали большие количества не относящихся к делу теорем, пока не натыкались на нужную. Из-за этой неэффективности многие утверждают, что чисто формальные синтаксические методы управления поиском в принципе не способны справиться с такими большими пространствами, и единственная альтернатива этому - положиться на неформальные, специально подобранные к случаю (лат. "ad hoc") стратегии, как это, похоже, делают люди. Это один из подходов, лежащих в основе экспертных систем (см. главу 7), и он оказался достаточно плодотворным.




Начало  Назад  Вперед



Книжный магазин