Вся схемотехника разделяется на две большие области: аналоговую и цифровую Преимущества и недостатки этих технологий известны. Аналоговая схемотехника характеризуется максимальным быстродействием, малым потреблением энергии и малой стабильностью параметров. Цифровая схемотехника обладает прекрасной повторяемостью параметров. Это привело к её развитию в последние годы. В курсах электронных приборов рассматривались основные технологии производства цифровых микросхем: ТТЛ, ЭСЛ и КМОП, поэтому здесь особенности этих технологий рассматриваться не будут.
По мере развития цифровых микросхем их быстродействие достигло впечатляющих результатов. Наиболее быстрые из цифровых микросхем обладают скоростью переключения порядка 3..5 нс. (серия микросхем 74ALS), а внутри кристалла микросхемы, где нет больших ёмкостей нагрузки время переключения измеряется пикосекундами. Таким быстродействием обладают программируемые логические схемы и заказные БИС. В этих микросхемах алгоритм решаемой задачи заключён в их принципиальной схеме.
Часто для решаемой задачи не требуется такого быстродействия, каким обладают современные цифровые микросхемы. Однако за быстродействие приходится платить:
Первую задачу решает применение технологии КМОП цифровых микросхем (например микросхемы серий 1564, 74HC, 74AHC). Потребляемый ими ток зависит от скорости переключения логических вентилей. Именно поэтому в настоящее время подавляющее большинство микросхем выпускается именно по этой технологии.
Вторую задачу решают несколькими способами. Для жёсткой логики это разработка специализированных БИС. Использование специализированных БИС позволяет уменьшить габариты устройства, но стоимость его снижается только при крупносерийном производстве. Для среднего и малого объёмов производства такое решение неприемлемо.
Ещё одним решением уменьшения габаритов и стоимости устройства является применение программируемых логических схем (ПЛИС).