о физической символьной системе являются
16.1.2. Коннекционистские, или нейросетевые, вычислительные системы
Существенной альтернативой гипотезе о физической символьной системе являются исследования в области нейронных сетей и других, заимствованных из биологии, вычислительных моделей. Нейронные сети, например, являются физически реализуемыми вычислительными моделями познания, не основанными на предварительно интерпретированных символах, которыми точно описывается предметная область. Поскольку знания в нейронной сети распределены по всей ее структуре, зачастую сложно (а то и невозможно) соотнести конкретные понятия с отдельными узлами или весовыми коэффициентами. Фактически любая часть сети может служить для представления разных понятий. Следовательно, нейронные сети являются хорошим контрпримером, по крайней мере, условию гипотезы о физических символьных системах.
Нейронные сети и генетические алгоритмы сместили акцент исследований ИИ с проблем символьного представления и стратегий формальных рассуждений на проблемы обучения и адаптации. Нейронные сети, подобно человеческим существам и животным, умеют адаптироваться к миру. Структура нейронной сети формируется не только при ее разработке, но и при обучении. Интеллект, основанный на нейронной сети, не требует переведения мира на язык символьной модели. Скорее, сеть формируется при взаимодействии с миром, который отражается в неявной форме опыта. Этот подход внес значительный вклад в наше понимание интеллекта. Он дал правдоподобное описание механизмов, лежащих в основе физической реализации процессов мышления; более жизнеспособную модель обучения и развития; демонстрацию возможности путем простой локальной адаптации сформировать сложную систему, реагирующую на реальные явления; а также мощное орудие для когнитивной теории нейронных систем (neuroscience).
Именно благодаря своей многогранности нейронные сети помогают ответить на множество вопросов, лежащих за пределами впечатляющих возможностей символьного ИИ. Важный класс таких вопросов касается проблемы перцепции. Природа не столь щедра, чтобы представить работу нашего восприятия в виде набора точных формул предикатного исчисления. Нейронные сети обеспечивают модель выделения "осмысленных" образов из хаоса сенсорных стимулов.
Из-за своего распределенного представления нейронные сети часто более устойчивы, нежели аналогичные символьные системы. Соответствующим образом обученная нейронная сеть может эффективно классифицировать новые входные данные, проявляя подобное человеческому восприятие, основанное не на строгой логике, а на "схожести". Аналогично потеря нескольких нейронов серьезно не повлияет на производительность большой нейронной сети. Это является следствием избыточности, часто присущей сетевым моделям.
Содержание Назад Вперед
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий