Искусственный интеллект как эмпирическая проблема


Искусственный интеллект как эмпирическая проблема - стр. 27


Даже задачи обобщения или построения функций можно рассматривать с различных позиций. Например, статистические методы используются для обнаружения корреляции данных. Итеративный вариант рядов Тейлора позволяет аппроксимировать большинство функций. Алгоритмы полиномиальной аппроксимации на протяжении более столетия используются для аппроксимации функций по заданным точкам.

Итак, результат обучения (символьного, коннекционистского или эволюционного) во многом определяется принятыми предположениями о характере решения. Принимая в расчет этот синергетический эффект в процессе разработки вычислительных решателей задач, зачастую можно улучшить шансы на успех и более осмысленно интерпретировать результаты.

Дилемма эмпирика

Если в сегодняшних подходах к машинному обучению, особенно обучению с учителем, главную роль играет индуктивный порог, то обучение без учителя, которое используется во многих генетических и эволюционных подходах, сталкивается с противоположной проблемой, которую иногда называют дилеммой эмпирика. В таких подходах считается, что решения сложатся сами на основе эволюционирующих альтернатив, в процессе "выживания" наиболее подходящих особей популяции. Это мощный метод, особенно в контексте параллельных и распределенных средств поиска. Но возникает вопрос: откуда можно узнать, что система пришла к правильному решению, если мы не знали, куда идем?

Давным-давно Платон сформулировал эту проблему словами Менона из знаменитого диалога:




Начало  Назад  Вперед



Книжный магазин